亚洲国产成人无码AV在线播放,亚洲色偷拍另类无码专区,亚洲AV日韩AV永久无码久久,国产手机在线精品

技術(shù)文章您現(xiàn)在的位置:首頁 > 技術(shù)文章 > Broadpharm基礎(chǔ)篇什么是點擊化學?What is Click Chemistry?

Broadpharm基礎(chǔ)篇什么是點擊化學?What is Click Chemistry?

更新時間:2023-12-06   點擊次數(shù):794次

Click Chemistry is a chemical reaction between pairs of reagents (named click chemistry reagents) to exclusively react with each other under mild conditions and is effectively inert to naturally occurring functional groups such as amine groups. The term "Click Chemistry" was first coined by Sharpless in 2001 in an effort to design a method to easily synthesize molecules under mild conditions and the product can be easily isolated.


Click Chemistry reactions can be categorized into three generations:

(1) Cu(I)-catalyzed Azide-Alkyne Click Chemistry (CuAAC reactions, Figure 1):

Cu catalyzed azide-alkyne click chemistry reactions diagram


The first generation of Click Chemistry involved the reaction of azide with alkyne catalyzed by Cu(I). The copper catalyst allows for this reaction to be carried out efficiently under mild conditions in water whereas the reaction would require high temperature and high pressure without the copper catalyst. Copper catalyzed Click Chemistry has been found to have the second fastest rate constant of 10-100 M-1s-1.

Due to the toxic nature of copper to living structures and biosystems, copper catalyzed Click Chemistry is not a viable method of carrying out reactions in living systems which has led to the development of the following two generations of Click Chemistry.

(2) Strain-promoted Azide-Alkyne Click Chemistry (SPAAC reactions, Figure 2):

DBCO reagent or BCN reagent can be used to perform Click Chemistry with azide molecules without the need of heavy-metal catalysis.


Strain-promoted Azide-Alkyne Click Chemistry reactions diagram

Figure 2: Strain-promoted Azide-DBCO Click Chemistry


The bond strain created by the bond angle of the cyclooctyne (DBCO or BCN) requires less energy for the cyclooctyne to form the (3+2) cycloaddition which releases enthalpic energy caused by the ring strain of the cyclooctyne. This generation does not require copper as a catalyst and it can be used in cell surface and in vivo labeling. The rate constant is 10-2-1 M-1s-1.


(3) Ligation between tetrazine and alkene (trans-Cyclooctene)

Ligation between tetrazine and alkene (trans-Cyclooctene) diagram


The third generation of Click Chemistry is the ligation between tetrazine with trans-Cyclooctene (TCO). The mechanism for this ligation utilizes ring strain from the trans-Cyclooctene and an inverse Diels-Alder reaction between the electron rich trans-Cyclooctene and the electron poor tetrazine. This ligation has been found to be the fastest generation of Click Chemistry thus far with a rate constant of 1-106 M-1s-1. The reaction can also be carried out in vivo in aqueous solution.

Applications of Click Chemistry

Click Chemistry has been widely used in drug discovery, bioconjugation, labeling, and material sciences in the pharmaceutical and biotech industry due to its mild conditions and high selectivity.

Click Chemistry in Drug Discovery

Click Chemistry is utilized in the formation of ADC linkers in antibody drug conjugates. For example, Trodelvy (Sacituzumab Govitecan), also known as IMMU-132 (Figure 4), is an immune target therapy medicine for triple-negative breast cancer which contains sacituzumab and SN-38 bound with a linker. Click Chemistry is used in the formation of the linker to form a triazole that links SMCC to a PEG8 moiety.


structure of trodelvy

Figure 4: Structure of Trodelvy.


Click Chemistry in Joint Cartilage Therapy

Click Chemistry has also been used in cell-based therapy to treat damage in joint cartilage, relieve pain, and improve function. Autologous chondrocyte transplantation targets apoptotic chondrocytes in cartilage which can be identified by a six amino acid peptide, ApoPep-1, and by binding injected healthy chondrocytes from unaffected cartilage. ApoPep-1 carries a trans-Cyclooctene bound by a PEG Linker to apoptotic chondrocytes which can then bind healthy chondrocytes via Click Chemistry to tetrazine to encourage cartilage regeneration (Figure 5).


Diels-Alder diagram



Figure 5: Inverse Diels-Alder Click Chemistry reaction between TCO and tetrazene for joint cartilage therapy


Click Chemistry Tools

As a leading click chemisty reagent supplier worldwide, BroadPharm provides over 500 high purity Click Chemistry Reagents (tools) and Kits with an array of functional groups such as: Azide, Alkyne, DBCO, TCO, Tetrazine, BCN to empower our clients' advanced research and drug development.



靶點科技攜手Broadpharm,最快一周,為您提供點擊化學試劑。授權(quán)代理,正品保證,質(zhì)量無憂,貨期超快,助力您的研究應用。

靶點科技(北京)有限公司

靶點科技(北京)有限公司

地址:中關(guān)村生命科學園北清創(chuàng)意園2-4樓2層

© 2025 版權(quán)所有:靶點科技(北京)有限公司  備案號:京ICP備18027329號-2  總訪問量:294131  站點地圖  技術(shù)支持:化工儀器網(wǎng)  管理登陸

日本xxxx| 啦啦啦中文免费视频高清观看| 色偷偷AV老熟女| 无码一区二区三区av免费蜜桃视| 性色AV网站| 亚洲AⅤ无码专区在线观看Q| yin荡娇妻乱部分阅读| 福利cosplayh裸体の福利| 爆乳熟妇一区二区三区霸乳| 啊灬啊灬啊灬快灬高潮了听书 | 国产精品无码无卡无需播放器| 老太熟妇性bbwbbwbbw| 亚洲精品无码久久久久久久| 国产97在线 | 日韩| 亚洲精品国产成人| 玩弄了裸睡少妇人妻野战 | 久久久国产一区二区三区四区小说| 国产av躁一二三区免费播放| 国产乱码一区二区三区| 久久人人爽人人人人爽AV| 学生姝被内谢出白浆| 亚洲精品一区二区| 18禁裸男晨勃露j毛免费观看| 国产草草影院CCYYCOM| 免费人成在线观看网站| 狠狠婷婷综合久久久久久| 国产97人人人超碰超爽| 国产人妻久久精品一区二区三区| 天天干天天日| 欧美性猛交XXXX乱大交| 日韩亚洲AV人人夜夜澡人人爽| 亚洲AV中文无码乱人伦| 免费国产裸体美女视频全黄| 穿成小奶娃各种做肉高h| 亚洲欧美成人av在线观看| 老扒夜夜春宵第二部的| 岳丰满多毛的大隂户| 青草国产精品久久久久久| 中文字幕一区二区三区乱码| 亚洲乱码伦AV| 少妇粉嫩小泬喷水视频|