亚洲国产成人无码AV在线播放,亚洲色偷拍另类无码专区,亚洲AV日韩AV永久无码久久,国产手机在线精品

技術(shù)文章您現(xiàn)在的位置:首頁 > 技術(shù)文章 > ClickChemistry點(diǎn)擊化學(xué)疊氮試劑Azide Plus and Picolyl Azide Reagents

ClickChemistry點(diǎn)擊化學(xué)疊氮試劑Azide Plus and Picolyl Azide Reagents

更新時間:2023-04-22   點(diǎn)擊次數(shù):1118次

Azide Plus and Picolyl Azide 試劑

Kinetic comparison of conventional azide
(Figure 1). Kinetic comparison of chelating azide and non-chelating conventional azide.

Recent advances in the design of copper-chelating ligands, such as THPTA or BTTAA that stabilize the Cu(I) oxidation state in aqueous solution, improve the kinetics of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and greatly increase the sensitivity of alkyne detection. Copper-chelating ligands have also been shown to increase the biocompatibility of the CuAAC reaction by preventing the copper ions from causing biological damage1. The next step in improving the CuAAC reaction was the development of copper-chelating azides as more reactive substrates. Since it is speculated that the Cu(I)-azide association is the rate-determining step in the CuAAC catalytic cycle2, the introduction of a copper-chelating moiety at the azide reporter molecule allows for a dramatic raise of the effective Cu(I) concentration at the reaction site, enhancing the weakest link in the reaction rate acceleration(Figure 2). It has been proposed that the high reactivity of chelating azides comes from the rapid copper-azido group interaction which occurs prior to Cu(I) acetylide formation, and this renders the deprotonation of alkyne in the rate-determining step3. This concept was successfully exploited to perform CuAAC reactions using pyridine-based copper-chelating azides (picolyl azides) as substrates4-6. Nevertheless, the copper-chelating motif of picolyl azide molecules is not complete, requiring the presence of a copper chelator (e.g. THPTA) to achieve significant improvement in the kinetics of the CuAAC reaction3, 4.

In efforts to improve the performance of the CuAAC reaction in complex media, Click Chemistry Tools developed new chelating azides with a complete copper-chelating system in their structure, termed “Azides Plus"(Figure 3). These azides are capable of forming strong, active copper complexes and are therefore considered both reactant and catalyst in the CuAAC reaction. Using these types of azides, the CuAAC reaction becomes a bimolecular reaction and displays much faster kinetics compared to the CuAAC reaction performed with conventional azides.

Comparative kinetic measurements for the CuAAC reaction(Figure 4)were performed using an agarose-alkyne resin labeling experiment (3.0 uM CuSO4, with (6.0 uM) or without THPTA ligand) using Cy5 Azide Plus, Cy5 Picolyl Azide, and Cy5 bis-Triazole Azide – the fastest copper-chelating azide that has been reported to date7. As expected, the picolyl azide containing the incomplete copper-chelating motif displays relatively slow reactivity, in particular without the presence of THPTA. The kinetic data shows that completing a copper-chelating moiety greatly enhances reactivity, and importantly does not require the presence of copper-chelating ligands. Interestingly, the copper-chelating azides developed by Click Chemistry Tools display almost identical reactivity in the CuAAC reaction compared to the most reactive copper-chelating azide reported up to now7, bis-triazole azide.

The new copper chelating azides allow the formation of azide copper complexes that react almost instantaneously with alkynes under diluted conditions. This unprecedented reactivity in the CuAAC reaction is of special value for the detection of low abundance targets, improving biocompatibility, and any other application where greatly improved S/N ratio is highly desired.

Selected References:
  1. Steinmetz, N. F., et al. (2010). Labeling live cells by copper-catalyzed alkyne–azide click chemistry. Bioconjug Chem., 21 (10), 1912-6. [PubMed]

  2. Rodionov, V. O., et al. (2007). Ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition: a mechanistic report. J Am Chem Soc., 129 (42), 12705-12. [PubMed]
    Presolski, S. I., et al. (2010). Tailored ligand acceleration of the Cu-catalyzed azide-alkyne cycloaddition reaction: practical and mechanistic implications. J Am Chem Soc., 132 (41), 14570-6. [PubMed]

  3. Simmons, J. T., et al. (2011). Experimental investigation on the mechanism of chelation-assisted, copper(II) acetate-accelerated azide-alkyne cycloaddition. J Am Chem Soc., 133 (35), 13984-4001. [PubMed]

  4. Marlow, F. L., et al. (2014). Monitoring dynamic glycosylation in vivo using supersensitive click chemistry. Bioconjug Chem., 25 (4), 698-706. [PubMed]

  5. Clarke, S., et al. (2012). Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. Angew Chem Int Ed Engl., 51 (24), 5852-6. [PubMed]

  6. Gaebler, A., et al. (2016). A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins. J Lipid Res., 57 (10), 1934-1947. [PubMed]

  7. Gabillet, S., et al. (2014). Copper-chelating azides for efficient click conjugation reactions in complex media. Angew Chem Int Ed Engl., 53 (23), 5872-6. [PubMed]

訂購信息(靶點(diǎn)科技國內(nèi)倉庫):


靶點(diǎn)科技(北京)有限公司

靶點(diǎn)科技(北京)有限公司

地址:中關(guān)村生命科學(xué)園北清創(chuàng)意園2-4樓2層

© 2025 版權(quán)所有:靶點(diǎn)科技(北京)有限公司  備案號:京ICP備18027329號-2  總訪問量:294131  站點(diǎn)地圖  技術(shù)支持:化工儀器網(wǎng)  管理登陸

国产男女猛烈无遮挡免费网站| 含着jing液去上课h| 婷婷五月色丁香综缴情| 亚洲 小说 欧美 激情 另类| 久久精品国产亚洲AV麻豆色欲| 叫大声点浪货腿张开点学生 | 强壮公让我夜夜高潮a片视频| 成人免费无码成人影院日韩| 在教室伦流澡到高潮h| 久久久精品人妻久久影视| 啦啦啦WWW日本高清免费观看| japanese少妇高潮潮喷| 无码日韩精品一区二区免费暖暖| 双乳被老汉揉搓玩弄a片小说| 亚洲AV永久无码精品网站| 极品少妇hdxx麻豆hdxx| 亚洲综合无码一区二区三区| 艳妇荡岳丰满交换做爰| 国自产拍av在线天天更新| 成人国产片女人爽到高潮 | 少妇一晚三次一区二区三区| 西西人体www大胆高清视频| 免费A级毛片无码免费视频120软件| 最新国产の精品合集bt7086| 欧美丰满熟妇xxxx喷水| 人人妻人人添人人爽欧美一区| 性色av浪潮av色欲av一区| 亚洲乱亚洲乱妇无码麻豆| 邻居人妻与教练HD三级| 换着玩人妻hd中文字幕| 亚洲AV片在线观看| 18禁免费吃奶摸下激烈视频| 吸咬奶头狂揉60分钟视频| 天天躁日日躁狠狠躁| 当着全班面被c到高潮哭视频| 嫩草院一区二区乱码| 97亚洲成a人无码亚洲成a无码| 蜜桃麻豆WWW久久国产精品| 国产乱人伦无无码视频试看| 日本巜侵犯人妻人伦| 波多野结衣办公室性xxx|